A study of conditions for dislocation nucleation in coarser-than-atomistic scale models

نویسندگان

  • Akanksha Garg
  • Amit Acharya
  • Craig E. Maloney
چکیده

We perform atomistic simulations of dislocation nucleation in defect free crystals in 2 and 3 dimensions during indentation with circular (2D) or spherical (3D) indenters. The kinematic structure of the theory of Field Dislocation Mechanics (FDM) is shown to allow the identification of a local feature of the atomistic velocity field in these simulations as indicative of dislocation nucleation. It predicts the precise location of the incipient spatially distributed dislocation field, as shown for the cases of the Embedded Atom Method potential for Al and the Lennard-Jones pair potential. We demonstrate the accuracy of this analysis for two crystallographic orientations in 2D and one in 3D. Apart from the accuracy in predicting the location of dislocation nucleation, the FDM based analysis also demonstrates superior performance than existing nucleation criteria in not persisting in time beyond the nucleation event, as well as differentiating between phase boundary/shear band and dislocation nucleation. Our analysis is meant to facilitate the modeling of dislocation nucleation in coarser-thanatomistic scale models of the mechanics of materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An atomistic investigation into the nature of near threshold fatigue crack growth in aluminum alloys

Despite decades of study, the atomic-scale mechanisms of fatigue crack growth remain elusive. Here we use the coupled atomistic–discrete dislocation method, a multiscale simulation method, to examine the influence of dislocation glide resistance on near-threshold fatigue crack growth in an aluminum alloy. The simulations indicate that the threshold increases with an increase in dislocation glid...

متن کامل

Atomistic study of dislocation loop emission from a crack tip.

We report the first atomistic calculation of the saddle-point configuration and activation energy for the nucleation of a 3D dislocation loop from a stressed crack tip in single crystal Cu. The transition state is found using reaction pathway sampling schemes, the nudged elastic band, and dimer methods. For the (111)[110] crack, loaded typically at 75% of the athermal critical strain energy rel...

متن کامل

Anomalous dislocation multiplication in FCC metals.

Direct atomistic simulations of dislocation multiplication in fcc aluminum reveal an unexpected mechanism, in which a Frank-Read source emits dislocations with Burgers vectors different from that of the source itself. The mechanism is traced to a spontaneous nucleation of partial dislocation loops within the stacking fault. Understanding and a quantitative description of this unusual process ar...

متن کامل

Adaptive Strain-Boost Hyperdynamics Simulations of Stress-Driven Atomic Processes

The deformation and failure phenomena of materials are the results of stress-driven, thermally activated processes at the atomic scale. Molecular-dynamics (MD) simulations can only span a very limited time range which hinders one from gaining full view of the deformation physics. Inspired by the Eshelby transformation formalism, we present here a transformation “strain-boost” method for acceler...

متن کامل

Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density Functional Theory Local Quasi-continuum Method

We introduce the orbital-free density functional theory local quasi-continuum (OFDFT-LQC) method: a first-principles-based multiscale material model that embeds OFDFT unit cells at the subgrid level of a finite element computation. Although this method cannot address intermediate length scales such as grain boundary evolution or microtexture, it is well suited to study material phenomena such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014